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Abstract—This paper reports on the design and development
of a decision guidance system to make actionable recommen-
dations on a COVID-19 comprehensive mitigation protocol that
is Pareto-Optimal in terms of health outcomes, mitigation cost
and productivity loss. The comprehensive mitigation protocol
includes personal protection and social distancing; use of smart
applications for symptom reporting and contact tracing; tar-
geted testing based on identification of individuals with possible
exposure and/or infection via symptom reporting and contact
tracing; random surveillance testing, and; shelter, quarantine and
isolation procedures. The decision guidance system (1) gets, as
input, expert-generated configurations of epidemiological param-
eters and assumptions on population behavior, (2) precomputes
a database of discretized Pareto-optimal mitigation protocol
alternatives based on which it (3) provides decision makers
an iterative methodology of (a) Pareto-optimal KPI graphing
and trade-off analysis (between health, cost and productivity
outcomes), (b) detailed comparison of selected Pareto-optimal
mitigation protocol alternatives, and (c) what-if analysis for
selected protocol alternatives, including disease progression over
the time horizon and sensitivity analysis to refine and converge
on the mitigation protocol to be used.

Index Terms—COVID-19, coronavirus, mitigation protocol,
decision guidance, Pareto-optimal recommendations

I. INTRODUCTION

The total number of COVID-19 cases exceeded 28M, and
the death toll exceeded 500,000 in the US alone, as of
beginning of March, 2021 [7], [12]. According to [6], the total
economic cost of the pandemic to the US through Fall 2021 is
estimated at $16 trillion, or 90% of the gross domestic product
(GDP). This includes $4.4 trillion in losses due to premature
death [9]; $2.6 trillion in losses for long-term care [11]; $1.6
trillion in losses for mental health symptoms, and; $7.6 trillion
for lost economic output over 20 years [1], [19].

Social distancing, wearing masks, and comprehensive test-
ing and tracing have all been shown to be effective components
of a holistic and comprehensive mitigation approach to reduce
the impact of the pandemic [16], [20]. Deciding on the best
composition of such comprehensive mitigation strategy is,
obviously, a critical challenge. As a step in this direction,
this paper focuses on making actionable recommendations

on a comprehensive mitigation protocol for COVID-19 that
balances health, productivity, and cost outcomes, and is Pareto-
optimal.

There has been extensive work on epidemiological mod-
eling, e.g., see a recent comprehensive review of [4], [10].
Dynamic models based of the Susceptible- Exposed- Infected-
Recovered (SEIR) compartments and their extensions are most
commonly used to understand infectious diseases’ dynamics
[5], [8], [10]. Recently, the authors of [15] extend the stan-
dard SEIR compartmental model to assess social distancing
mitigation on COVID-19 transmission dynamics using factors
specific to COVID-19, resulting in the Susceptible, Unsuscep-
tible, Exposed, Infected, Hospitalized, Critical, Dead, Recov-
ered (SUEIHCDR) dynamic model, described as a system of
differential equations.

The work in [18] makes recommendations on COVID-19
screening strategies, in terms of frequency of asymptomatic
testing, to open a university campus. It is based on a variant
of the SEIR model, extended with an isolation pool due to
asymptomatic testing of the university population. However,
to the best of our knowledge, these prior models do not
take into account a comprehensive parameterized protocol of
interrelated mitigation strategies.

To bridge this gap, the recent work [2] proposes a discrete
dynamic model, extending the SUEIHCDR model of [15] with
a comprehensive mitigation protocol parameterized with (1)
personal protection and social distancing mitigation ratios,
(2) population ratios with smart apps for symptoms reporting
and contact tracing, (3) the number of tests per individual
marked by each of the apps, (4) the ratio of the population
marked by the apps and negatively-tested that are required
to stay in quarantine/isolation due to low test sensitivity, and
(5) the frequency of surveillance testing on a random round-
robin basis. The model in [2] estimates Key Performance
Indicators (KPIs) including (1) health outcomes, in terms of all
compartments, (2) the mitigation cost and its break-down, and
(3) productivity loss in terms of percentage of non-circulating
population.

However, while this model (as all predictive models) allows



running trial and error scenarios for various instances of
the mitigation protocol and comparing the results, it falls
short of systematic decision guidance to make actionable
recommendations to public policy decision makers on Pareto-
optimal mitigation protocols. This is exactly the focus of this
paper.

More specifically, the key contribution of this paper is the
design and development of a Decision Guidance (DG) system
to make actionable recommendations on a comprehensive
mitigation protocol that is Pareto-optimal in terms of (1)
health outcomes - the total number of infections over the time
horizon, (2) mitigation cost, and (3) productivity loss.

From the base input, the DG system gets a domain-expert-
produced configuration of epidemiological parameters, includ-
ing (1) transition rates among and duration within compart-
ments (such as Susceptible, Exposed, Infected, Recovered,
Hospitalized, Critical and Dead); (2) sensitivity and specificity
of COVID-19 tests; (3) time horizon under consideration and
initial state of compartments and population.

From the scenarios generation template, the DG system gets
discretized parameters of the mitigation protocol, including
(1) mitigated daily beta - the number of individuals exposed
to COVID-19 by a single infected individual, assuming all in
population are susceptible, after social distancing and personal
protection mitigation is enacted; (2) individual compliance
ratios; (3) the ratios of Enhanced Contact Tracing (ECT) and
Symptoms Reporting (SR) apps on mobile devices within
population; (4) number of tests administered as triggered by
marking an individual by ECT or SR app; (5) surveillance test-
ing window within which the entire asymptomatic population
is tested on a random round-robin basis.

Based on the basic and scenario-generation input, the DG
system runs the epidemiological model extended with mitiga-
tion on each generated scenario, and then computes a Pareto-
Front of mitigation protocol instances, i.e., for every cost
point, it computes an optimal mitigation protocol instance that
minimizes the total number of infections.

We envision that health policy decision makers will be
key users; we refer to them as decision makers. Decision
makers input the basic assumptions on (1) mitigated daily
beta (effected by number of close contacts, on average, an
individual has per day with others, and probability of a
susceptible individual exposure to COVID-19 in close contact
with an infected individual); and (2) compliance ratio by
individuals.

Given that input, the DG system provides decision makers
an iterative methodology of (1) Pareto-optimal KPI graphing
and trade-off analysis (between health, cost and productivity
outcomes); (2) detailed comparison of selected Pareto-optimal
mitigation protocol alternatives; (3) what-if analysis for se-
lected protocol alternatives, including (a) computing and pre-
senting KPIs, (b) graphing and analyzing disease progression
over time horizon, and; (c) graphing and analyzing sensitivity
of decision makers’ assumptions and choices. The proposed
system follows the methodology of decision guidance systems

proposed in [3], [14] and the recommendation process method-
ology proposed in [17].

This paper is organized as follows. Section II reviews
COVID-19 epidemiological model extended with a compre-
hensive mitigation protocol from [2], which we leverage in
the DG system. Section III describes the proposed methodol-
ogy and Decision Guidance system functionality. Section IV
describes the high-level architecture of the DG system, and
implementation details of its components. Section V demon-
strates the methodology and the DG system use through an
example of prototypical population of 10,000 persons over the
time horizon of 150 days. Finally, Section VI concludes and
briefly outlines future research.

II. REVIEW OF EPIDEMIOLOGICAL MODEL EXTENDED
WITH A COMPREHENSIVE MITIGATION PROTOCOL

For the DG system reported in this paper, we leverage the
model from [2], which we briefly overview in this section. This
models adapts Susceptible- Unsusceptible- Exposed- Infected-
Hospitalized- Critical- Dead- Recovered (SUEIHCDR) model
of COVID-19 from [15], by extending the first four com-
partments with non-circulating (shelter, quarantine or isola-
tion) and circulating sub-compartments. The epidemiological
model is extended with a comprehensive mitigation protocol
that is parameterized with (1) personal protection and social
distancing mitigation ratios, (2) population ratio that have
smart apps for symptoms reporting and contact tracing, (3) the
number of tests per individual requested as a result of being
marked by the smart apps, (4) the ratio of marked (by ECT
and/or SR apps) individuals that are requested to stay in non-
circulation despite having a negative-test, and (5) the testing
frequency of asymptomatic individuals on a random round-
robin basis. Technically, the model (1) uses Bayesian probabil-
ity analysis to estimate the conditional probabilities of being in
non-circulating sub-compartments as a function of mitigation
protocol parameters and (2) computes transition ratios among
the compartments as part of a discrete dynamic model. The
model computes Key Performance Indicators (KPIs) including
(1) health outcomes, in terms of all compartments, (2) the
mitigation cost and its break-down, and (3) productivity loss
in terms of percentage of non-circulating population.

III. DECISION GUIDANCE FOR COVID-19 MITIGATION:
METHODOLOGY AND SYSTEM FUNCTIONALITY

The main DG system dashboard, displayed in Figure 1,
supports the methodology of deriving actionable recommen-
dations on COVID-19 mitigation protocols. The key method-
ology involves an iteration of the following steps supported
by the DG system.

1) Domain-expert configuration: epidemiological parame-

ters and scenario templates

2) Decision makers’ assumptions

3) Pareto-Optimal KPI Graphing and Tradeoff Analysis

4) Detailed comparison of selected Pareto-optimal options

5) What-if Analysis for the selected options

« Computing and presenting KPIs
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o Graphing and analyzing disease progression over
time-horizon
« Graphing and analyzing sensitivity of assumptions

A. Inputs and Assumptions

The DG system input include the Base Input and Scenario
Template.

The Base Input file has parameters which are depicted in
Table I, and include: (1) time horizon, (2) initial population,
groups, and sub-compartment information (number of individ-
uals and transition rates between groups), (3) Costs, including
those of tests, isolation, and SR and ECT apps, and (4) tracking
windows. These are generally provided by domain experts.

The Scenario Template file includes all the possible protocol
parameters that the decision maker would like the model to
use. These protocol parameters include details regarding the
scenario(s) - possible mitigation and compliance levels, smart
app settings, and possible asymptomatic testing windows; the
smart app settings include: the ratio of population that is utiliz-
ing the SR and ECT apps, the number of tests administered for
an individual that is marked by either the SR app or the ECT
app, and the probability an individual is sent to the NC sub-
compartment given a negative test result. All the parameters
that are included in the Scenario Template can be seen in Table
II.

Lastly, the user selects a mitigated daily beta and compli-
ance ratio from the drop-down menu, which is an assumption
reflecting population behavior. Both the files and the mitigated
daily beta and compliance ratio are chosen by the decision
maker on the system, as shown in Figure 1.1.

B. Pareto-Optimal KPI Graphing and Tradeoff Analysis

After both input files and the mitigated daily beta and
compliance ratio are chosen, the system will either generate
graphs if unavailable or display the cached results, as seen in
Figure 1.2. The model essentially uses the parameters from the
Base Input file and iterates over the possible scenarios from
the Scenario Template, and at each budget point, is selects
the Pareto-optimal scenario. Once the model has completed,
the Key Performance Indicator (KPI) Tradeoff graphs are
shown on the system. The decision maker can now toggle
between various mitigated daily beta and compliance ratio
combinations on the graph, and the system will update the KPI
Tradeoff graphs accordingly. The chart has the KPIs on the y-
axis for each budget point on the x-axis. The KPIs include
total infections, peak infections/day, days to peak infections,
prob of 0 deaths, cumulative NC days, total cost, cost of tests,
cost of ECT app, cost of SR app, cost of quarantine; the
details of each KPI is shown in Table III. Initially, only total
infections, and peak infections per day are shown, but others
can be displayed by clicking their entries on the legend. At any
time, the decision maker has the option to swap the Base Input
and/or the Scenario Template files, and the graphs will update
immediately (assuming graphs were previously generated).

Input Par t Definition
General Setting
Time Horizon Number of days in simulation, from 0, ..., n

Outbreak Infected Ratio

Ratio of the total population that is infected
needed to define an outbreak

Max NC Population Ratio

Max allowed ratio of the total population that
is non-circulating during the time horizon

Initial Compartments

pop

Aggregate number of individuals from all
groups {U, S, E, I, R, H, C, D, M} initially

U,S,E, LR, H C,D,M

Number of individuals in each group initially

Transition Ratios

S — U, §—e

Transition rates from s to u and e, respectively

u-—m

Transition rate from u to m

e—i,e—m

Transition rates from e to i and m, respectively

i=rni—=hi—m

Transition rates from i to r, h, and m, respec-
tively

h—=rh—=c¢h—=m

Transition rates from h to r, ¢, and m, respec-
tively

c—=hc=dc—m

Transition rate from s to u

Mitigation

Compliance

Ratio of the total population that is compliant
with the protocol

% High Risk Sheltering

Ratio of the total population that is high risk;
to be requested to shelter

SD Interactions/Day

Average number of interactions per person per
day with other individuals (as defined by the
proximity tracking application

SD Mitigation Ratio

Percentage reduction to the average number of
interactions per person per day as a result of
social distancing

PP Exposure Given Proba-
bility

Probability that a random susceptible person
becomes exposed due to an interaction with
an infected individual

PP Cost/Person/Day

Cost of personal protection normalized per
person per day

ECT App Ratio in Popula-
tion

Ratio of population having exposure tracking
apps

ECT Tracking Window

Number of days prior to infection that should
be assessed to alert potentially exposed indi-
viduals of their status

ECT Wait Before Test

Number of days after potential exposure that
an individual should wait prior to taking a test
if they have been notified of potential exposure
through the app and are not symptomatic - if
symptomatic then test is given immediately

ECT Cost/Unit

Cost of the ECT app normalized per person
per time horizon

SR App Ratio in Popula-
tion

Ratio of population having symptoms report-
ing apps

SR Probability Symptom
Given

Probability that SR app reports symptomatic
given individual is in u, s, e, i; unique values
for each compartment

SR Cost/Unit

Cost of the SR app normalized per person per
time horizon

SR Ratio of Probability
Known Symptomatic

Ratio of probability of a symptomatic individ-
ual realizing they are symptomatic without the
use of the SR app

Cost/Unit

Cost of 1 test

Wait for Results

Number of days needed to receive test results

Tracking Window

Number of days within which the test is still
considered relevant

# Tests/SR detection

Number of tests given to individual marked
symptomatic by the SR app

# Tests/ECT detection

Number of tests given to individual marked
symptomatic by the ECT app

Asymptomatic
Window

Testing

Number of days in which entire asymptomatic
population is testing via round robin method

Prob NC given Neg Test

Probability of keeping an individual in the NC
population given negative test results, values
varies based on what triggered the need for
test (ECT, SR, asymp)

Misc

Infection duration

Duration of COVID-19 infection

Exposure duration

Time it takes for individual to be infected

Quarantine cost

Cost of quarantine

TABLE 1

INPUT PARAMETERS FOR THE MODEL




I

Input Parameter

[ Definition

m

Mitigated Daily Beta

C

Compliance

Asymptomatic Testing

Number of days within which the entire
asymptomatic population is tested on a random
round-robin basis

Smart App Settings

SR app ratio

Percentage of population utilizing SR app

ECT app ratio

Percentage of population utilizing ECT app

Tests/SR detection

Number of tests requested when marked by SR

app

Number of tests requested when marked by
ECT app

Percentage of individuals kept in NC popula-
tion given negative test result

TABLE II
SCENARIO TEMPLATE

Tests/ECT detection

Prob NC given Neg
Test

[ KPI [
Health Outcomes
Total Infections
Peak Infections/Day

Definition |

Total individuals infected over the time horizon
Maximum number of individuals infected on a
single day

Number of days to reach Peak Infections/Day
Probability of 0 deaths during the time horizon

Days to Peak Infection
Probability of 0 deaths
Productivity Qutcomes
Cumulative NC days

Cumulative number of days people are quar-
antined

Cumulative NC days | Days in quarantine (all individuals) / (time
(%) horizon * total individuals)

Mitigation Cost Qutcomes
Total Cost Total cost of best protocol over time horizon
Cost of Tests Cost of testing over time horizon

Cost of ECT apps Cost of tracking apps over time horizon

Cost of SR apps Cost of symptom reporting apps over time
horizon

Cost of quarantine (of all individuals) over
time horizon

TABLE III
KEY PERFORMANCE INDICATORS (KPIS)

Cost of Quarantine

C. Comparison of selected Pareto-optimal options

On the KPI Comparison Chart in Figure 1.2, decision
makers choose one or more points on the chart to further in-
vestigate, triggering entries on the Pareto-optimal Comparison
Table, as seen in Figure 1.3. Each entry on the table shows
all the KPIs (health, productivity, and cost outcomes) and the
best Pareto-optimal parameters found within that budget. This
table allows decision makers to view and compare the KPIs
and Pareto-optimal mitigation protocol parameters at various
budget points.

D. What-if Analysis

Decision makers choose and transfer some rows from the
Pareto-optimal Comparison Table to the What-If Scenarios
Table in Figure 1.4, by selecting its radio-button and clicking
the ’ADD TO WHAT-IF’ button.

The What-if Analysis Table allows the decision maker to:

« modify mitigation protocol parameter(s) to observe the
resulting changes in the KPIs

« view disease progression over time horizon, as shown in
Figure 1.5

« graph and analyze sensitivity of assumptions, as show in
in Figure 1.6

In this table, decision makers can view how modifying one
or more protocol parameters changes the resulting KPIs. Deci-
sion makers can simulate modifications to compare mitigation
protocol alternatives. From the Time Horizon Chart, decision
makers can observe how one or more KPIs vary by day over
the time horizon. To view it for a row, decision makers select
the line style, which can be none, solid, dash, dot, or dashdot
to differentiate between the rows on the graph.

The Sensitivity Analysis Chart shows, for a protocol al-
ternative under consideration, how changes in a particular
parameter affects the KPIs. To display it, decision makers
select the radio button for a row, and then select one of the
available parameters: (1) Mitigated Daily Beta, Compliance,
Test Wait for Result, Initial Infected Exposed Percent, and
Initial Recovered.

E. State Diagram

Figure 2 shows all the states in the system and the events
that must take place to go from one state to another. As
mentioned previously in this section, the decision maker must
choose a Base Input, Scenario Template, and a Mitigated Daily
Beta and Compliance pair to generate the KPI Tradeoff Chart
as show in state (1). The decision maker is able to toggle
various KPIs to observe on this chart. From this point, if
they choose to further investigate, they can chose one or
more points from the graph to display the the Pareto-Optimal
Comparison Table (2). Here they can select a row, and add it
to the What-if Scenarios Table (3) by then clicking the “ADD
TO WHAT-IF” button. Now they can modify the protocols
in a row and immediately see the changes this causes to the
KPIs. They can also visualize the data in two ways: in the
Time-Horizon Chart (4), or the Sensitivity Chart (5), each of
which is depicted in the diagram. They see the time-horizon by
selecting a line style for one or more rows to show the changes
to the SUEIHCDR categories in the Time-Horizon Chart (4).
They can select or de-select rows to see in the chart. To see
the Sensitivity Chart (5) they select the radio button for a row,
and an entry in the Sensitivity Parameter drop-down. They
can the select a different KPI row, or sensitivity parameter to
immediately see the new chart.

IV. DG SYSTEM ARCHITECTURE & IMPLEMENTATION
A. Architecture

The high-level architecture of the DG system is depicted
in Figure 3. It has three main components: (1) a Dashboard
Web Application written in Python, (2) a Pareto-front Database
layer stored in MongoDB, and (3) a Scenario Generator
Daemon that performs time-consuming computations. The
core of the system consists of Python modules which generate
all scenarios. From these scenarios the system computes the
Pareto-front of the mitigation protocols, which correspond to
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Fig. 2. State Diagram

the KPI Trade-off graphs. They are also used to perform What-
if Analysis for the selected options, graphing and analyzing
disease progression over the time-horizon, and performing
sensitivity analysis.

Dashboard Web Application The web application is written
Python, making extensive use of the Plotly Express and Dash
packages from Plotly Software [13]. Plotly and Dash allow the
creation of web applications that display complex, interactive
graphs and charts. They are distributed under the MIT license.

Pareto-front Database Producing the model data is relatively
time-consuming for an interactive application (typically on
the order of minutes), so we store the results in a database.
We chose MongoDB, since the both the input and generated

AWS EC2 Instance

Docker Container

gunicom web

server(Python)

Docker C@ainer
Database (MongoDB)

7

Docker Container

scenario generator
“| daemon (Python)

[ Worker ]

[ Worker ]

Fig. 3. Software Components of the DG system

model data are represented as JSON. MongoDB allows for
the efficient storage and rapid retrieval of JSON documents in
binary (BSON) format.

Scenario Generator Daemon Generating the model from
the input files can take several minutes, so it needs to be
done asynchronously from the web application. The generator
daemon is a Python program that polls the database for
generation requests, passes them to worker processes, and
writes the results back into the database. The web application
displays the generated models, and periodically checks for
completed work. A table displays a global log of the requests
and their status (one of new, running, succeeded, or failed).

The graphs, tables, and controls are all implemented using
Dash modules. Although the page the user sees has many
interactive features, Dash requires the developer only to write
Python and make calls to the API. The primary modules
used by the DG system are the dash_core_components.Graph
and dash_table.DataTable. The former produces the interactive
graphs, and the latter produces the interactive tables. A variety
of other Dash components make up the other widgets on the
web pages such as drop-downs, links, markdown, text-areas,
file uploads, confirmation dialogues, and buttons.

In some cases, it is helpful to store data in the user’s
browser. For example, the Graph object does not allow points
to be manipulated from outside the Graph component itself.
This is a problem since we would like to be able to clear all
the points, or remove one, when the user deletes a row from
the Pareto-optimal Comparison table. To work around this, we
store the selected points in a Store object, which allows us to
keep the points in browser memory, and manipulate them as
needed. The KPI Tradeoff chart is rendered from these stored
points.

The Generated Graphs table reports to the user which
combinations of Base Input and Scenario Template files
have generated scenarios in the database. To keep this table
up-to-date, we use the dash_core_components.Interval class,
which calls a thread asynchronously that periodically polls the
Pareto-front Database, and updates the user interface when



new files are uploaded and scenarios generated.

B. Implementation

There are three places where significant computations are
performed, as depicted in Figure 4, and described in detail
below.

1) When the user generates scenarios.

2) When the user adds a row to the What-If Scenarios table,
or modifies the protocols in an existing row.

3) When the user selects a row in the What-If Scenarios
table to display in the Sensitivity graph, or updates the
sensitivity parameter in the drop-down menu.

Generation of Scenarios: The user has selected Base In-
put and Scenario Template files, and clicked the “Generate”
button. The scenario generator daemon does the following:

1) The selected base input file and scenario template file
are retrieved from the database.

2) All combinations of these scenario parameters are sub-
stituted into the Base Input file, as described in Section
II.

3) Each combination is run through the COVID-19 state-
transition model for the number of days defined in the
Base Input file. The KPIs are aggregated; note that
these include the total cost of each mitigation approach,
and the total number of infected individuals from the
population.

4) The data is aggregated to the Mitigated Daily Beta and
Compliance level. For each distinct cost C'in the outputs
from the previous step, the protocol instance with the
lowest number of infected people within budget C' is
selected for display.

5) The optimal protocol instance for each total cost is saved
to the database, along with all associated KPIs, for future
display and calculations.

Update What-if Table: The user has copied a row from the
Pareto-optimal Comparison table to the What-if Scenario table,
or has updated a protocol parameter for an existing row in the
latter table. This causes a refresh of the table display:

1) Each row is processed. The Mitigated Daily Beta, Com-
pliance, and protocol parameters (current or modified)
are substituted into the model input.

2) A single iteration of step 2 from the previous algorithm
is executed with the protocol parameters. The new KPI
values are written to the What-if table, and the complete
time series for the KPIs, for each row, are saved in
memory, for use by the Time-Horizon graph.

Generate Sensitivity Graph: when a user selects a row in the
What-if table, and chooses a sensitivity parameter in the drop-
down menu, the effect of varying that parameter is calculated.
This is done by discretizing the selected parameter and running
the scenarios as follows:

1) The code picks a lower bound, an upper bound, and
a step value, which are dependent on the selected
sensitivity parameter.

2) Iterate the steps from the lower bound to the upper
bound. For each step, run through the scenario gen-
eration with all other parameters fixed to the selected
Mitgated Daily Beta, Compliance, and what-if table
protocol parameters. This is shown in the following
pseudocode:

b = get_lowerbound()

ub = get_upperbound|()

step = get_step()

cur =1b

KPI =]

while cur <= ub : do
KPI = KPI + run_model(cur, .. .)
cur—+ = step

end while

return KPJ

3) Update the Sensitivity graph with the calculated values.

V. SYSTEM DEMONSTRATION

This section provides an example of how a decision maker
evaluates different mitigation protocols by comparing their
total costs and effectiveness, and converges to choosing the
recommended alternative.

In Figure 5 the decision maker selects a Base Input and
Scenario Template. Table IV shows a sample input that was
used for the model. Figures 5-10. These will have already
been created and loaded by a domain expert such as an
epidemiologist, and a user will have clicked the ’”GENERATE’
button, to produce the KPI Comparison graphs. The decision
maker assumes that the mitigated daily beta will be 0.6 and
the compliance will be 0.9, and selects that combination from
the drop-down menu. The description below the drop-down
explains what the mitigated daily beta means: the number of
close contacts per person per day is 1.7, and the likelihood of
close contact resulting in exposure is 0.353.

The KPI Tradeoff Chart is in Figure 6. It shows the KPIs for
the best mitigation protocol, in terms of the total number of
infections, for all possible cost points. By default, the graphs
for the total number of infections and the peak infections/day
are shown. Several other KPIs are listed in the chart legend.
Clicking one causes its graph to appear on the chart.

The decision maker selects several points on the chart
for comparison: the lowest cost protocol ($64,487), the
point at which additional costs seem to provide little benefit
($23,935,847), and several interesting points in between,
such as when a small budget increase results in a significant
reduction in total infections ($1,311,153). Each time they
select a point, it is added to the Pareto-optimal Comparison
Table, which is in Figure 7. The decision maker examines this
table to compare all the health, productivity, and cost KPIs,
as well at the protocols. They decide to take a closer look at
the protocols corresponding to budgets $64, 867, $1, 311, 153,
$10, 513,290, and $23,935, 847.
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Fig. 4. Data Flow of the DG System




Input Parameter |

Example Value

General Settings

Interval day
Time Horizon 150
Outbreak Infected Ratio 0.05
Max NC Population Ratio 0.3
Initial Compartments

pop 10,000
u 0

s 9,360
c 40

i 100
r 500
h 0

c 0

d 0

m 0
Transition Ratios

u— m 5.5e-06
e — i 0.25
e —m 5.5e-06
i—r 0.0999
i—h 0.0002
i—m 5.5e-06
h—r 0.08
h—c 0.02
h— m 5.5e-06
c—h 0.08
c—d 0.02
c—m 5.5e-06
Mitigation

Compliance 0.9
% High Risk Sheltering 0
SD Interactions/Day 1.7
SD Mitigation Ratio 0
PP Exposure Given Probability 0.411764706
PP Cost/Person/Day 0
ECT App Ratio in Population 0.9
ECT Tracking Window 10
ECT Wait Before Test 4
ECT Cost/Unit $0
SR App Ratio in Population 1.0
SR Probability Symptom Given 0.01
SR Ratio of Probability Known 0.5
Symptomatic

SR Cost/Unit $3
Wait for Results (days) 1
Tracking Window 10

# Tests/SR detection 1

# Tests/ECT detection 1
Asymptomatic Testing Window (days) 7

Prob NC given Neg Test

prox: 1, symp: 1, asymp: 0

Prob positive given s

symp: 0, asymp: 0

Prob positive given u

symp: 0, asymp: 0

Prob positive given e

symp: 0.475, asymp: 0.375

Prob positive given i

symp: 0.99, asymp: 0.75

Base s — u 0.0001
Misc parameters

Infection duration 10
Exposure duration 4
Quarantine cost $0

TABLE IV

SAMPLE INPUT PARAMETERS FOR THE MODEL

A ile:
Base Input base_input X > Manage base input files
Scenarios scenario_template X w Manage Scenarios
Template Template Files
Graphs do REGENERATE
exist.
Mitigated Daily 0.6/0.9 % w

Beta / Compliance

Mitigated daily beta: 0.6

close contacts per person per day: 1.7

probability of exposure in close contact with infected: 0.353
Compliance: 0.9

Fig. 5. Input for DG System

Fig. 6. KPI Tradeoff Chart of DG System

For each of these rows, the decision maker selects its radio
button, and clicks the ’ADD TO WHAT-IF BUTTON’. This
moves the row to the What-if Scenarios Table, shown in Figure
8. It would be possible at this point for them to modify the
protocol parameters for a row, and immediately see the KPI
changes; but the decision maker does not do this yet.

After observing protocol alternatives in the What-if Scenar-
ios Table, the decision maker thinks the last two alternatives
are the most promising, and would like examine and compare
them more closely. To do that, they would like to see the
progression of the disease over the time-horizon, in terms
of the infected and infected isolated compartments. They
select a solid line for the third alternative, and a dashed
line for the fourth alternative. These then appear in the
Time-Horizon Chart, shown in Figure 9. The decision maker
observes that for the protocol represented by the dashed line,
the number of infections is lower, and is decreasing over
the time horizon. Whereas in the protocol represented by the
solid line, the number of infections gradually increases to
the peak of 241 individuals (corresponding to 2.41% of the
population) on day 87 of the time horizon. However, cost
of the solid-line protocol (the third in the What-if Scenarios
Table) is significantly lower than the dashed-line protocol
(the fourth in the What-if Scenarios Table): $10,513,290,
vs. $23,935,847. The decision maker observes that for the
less expensive protocol, the number of isolated individuals per
day peaks at approximately 200, which can be supported by
accommodation of the isolation dormitory.

The decision maker is leaning toward selecting the protocol
represented by the solid-line, but would like to understand the




budget kpi best protocol parameters
health productivity cost
cost # tosts # tosts prob. set to
days to prod cost
total peak = cumulative tota. cost of of cost of requested requested NC population asymptomatic
peak of 0 cumulative of SR
infections infections/day NC days cost tests zCT quarantine with SR with ECT wher marked when marked give: test  testing
infections deaths NC days app
v app app app by ECT app by SR app (days)
(o] $64,867 8465.9 1666 52 97.1% 72057.4 6.9% $64,867 $34,868 $0 $29,999 $0 100% 90% 0 0 100% £920
C $1,311,153 6406.3 879 53 98.0% 147702.4 14.1% 81,311,153 $1,281,168 $0 $29,985 $0 100% 90% 100% 960
O  $6,159,065 4179.3 502.7 72 98.8% 105288.2 0.0% $6,159,065 $6,129,083 $0 $29,982 $0 100% 90% 100% 3
QO $10,513,290 240.5 87 99.4% 60507.5 5.8% $10,513,290 $10,483,301 $0 $29,989 $0 100% 90% 100% 7
O $12,143,375 74.4 84  99.5% 49030.3 4.7% 812,143,375 $12,113,384 $0 $29,992 $0 100% 90% 100% 6
C) $14,234,388 1358.9 25.7 68 99.6% 26332.3 2.5% $14,234,388 $14,204,39 $0 $29,997 $0 1008 90% 0 0 100% 5
C) $17,997,466 874.6 00 0 99.7% 28505.8 2.7% 817,997,466 $17,967,470 $0 $29,996 $0 1008 90% 100% 4
@ $23,935,847 599.8 00 0 99.8% 21941.5 2.1% $23,935,847 $23,905,850 $0 $29,997 $0 1008 90% 1008 3
Fig. 7. Pareto-Optimal Comparison Table of DG System
Time Horizonm
budget kpi best protocol parameters
Line Style
health productivity cost
prod. set
# tests # tests
to NC
days to @ prob cost ¢ cost requested requested
total peak slati total cost of cost of population population population asymptomatic
peak of lati of of SR when when
infection ions/day NC days cost tests quarantize with SR with ECT ‘ given meg  testing
infections deaths NC days ECT  app marked by marked by
) app app test (days)
app ECT app SR app
result
none $64,0867 8465.9 1666 2 97.1% 2 4 6.9\ $64,867 $34,868 $0 $29,999 $0 100% 908 0 0 1000 ,920
rone §L,311 3 €406.3 879 3 /. 47702.4 14.1v $1,311,153 §$1,281,168 $0 $29,985 $0 1000 0 1000 960
. solid $10,513,2% 2379 240.5 87 . 60507.5 5.8% $10,513,290 $10,483,301 $0 $29,989 $0 1008 908 1 1 1008 7
dash $23,935,847 599.8 0 0 .6 219%41.5 2.1% $23,935,847 $23,905,850 $0 529,997 $0 100% 208 1 100% 3
Fig. 8. What-if Scenarios Table of DG System
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Fig. 9. Time-Horizon Chart of DG System

sensitivity of the health and other outcomes to the assumptions,
as the assumptions may not be fully accurate. To do this,
they click the radio button for the solid-line protocol of
$10, 513,290, and then select the Sensitivity Parameter miti-
gated_daily_beta. This shows in Figure 10 the KPIs for a range
of mitigated daily beta values. The decision maker can change
a protocol parameter in the row for budget $10,513,290, at
which point the KPIs are recalculated, and both the Time-
Horizon Chart and the Sensitivity Chart are updated. While the
total infections are highly sensitive to mitigated daily beta, the
decision maker knows that 0.6 was already an over-estimation.
The decision maker has the option to pick a more conservative
mitigated daily beta, say 0.7, and redo the analysis.

The decision maker studies the sensitivity of other assump-

Fig. 10. Sensitivity Chart of DG System

tions, using the Sensitivity Chart, including the wait time for
test results, initial number of infected individuals, compliance
ratio, and number of recovered individuals at the beginning of
the time horizon. The decision maker decides to recommend
the dashed-line protocol and make additional recommenda-
tions, including strong enforcement of compliance, and social
distancing and personal protection recommendations. Also,
they recommend only working with labs that return test results
within one day, since waiting two days increases the total
number of infections by about 35%.

The Dashboard Web Application can be accessed here
http://54.147.155.77:8080/covid.



VI. CONCLUSION & FUTURE WORK

This paper reports on the development of the first, to the best
of our knowledge, Decision Guidance system and methodol-
ogy to make actionable recommendations on a comprehensive
COVID-19 mitigation protocol, which are Pareto-optimal in
terms of health outcomes, mitigation costs and productivity
loss. Many interesting research questions remain open, in-
cluding efficient algorithms for generation of Pareto-front of
mitigation protocol alternatives not through discretization, but
through the use of derivative-base optimization algorithms.
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