CoJava: A Unified Language for Simulation and
Optimization

Alexander Brodsky!'? and Hadon Nash?

! George Mason Unviersity, Virginia, USA, brodsky@gmu.edu
2 Adaptive Decisions, Inc., Maryland, USA, hnash@adaptivedecisions.com

Abstract. We have proposed and implemented the language ColJava,
which offers both the advantages of simulation-like process modeling in
Java, and the capabilities of true decision optimization. By design, the
syntax of CoJava is identical to the programming language Java, ex-
tended with special constructs to (1) make a non-deterministic choice
of a numeric value, (2) assert a constraint, and (3) designate a program
variable as the objective to be optimized. The semantics of CoJava inter-
prets a program as an optimal nondeterministic execution path, namely,
a path that (1) satisfies the range conditions in the choice statements,
(2) satisfies the assert-constraint statements, and (3) produces the opti-
mal value in a designated program variable, among all execution paths
that satisfy (1) and (2). To run a CoJava program amounts to first find-
ing an optimal execution path, and then procedurally executing it. We
have developed a CoJava constraint compiler based on a reduction of
the problem of finding an optimal execution trace to a standard sym-
bolic formulation, reinterpreting Java code as a symbolic constraint con-
struction, and solving the resulting optimization problem on an external
solver. To demonstrate the power of CoJava, we have implemented a re-
alistic problem in the area of robot arm control in CoJava. The robot arm
is constructed using self-contained components implemented as CoJava
classes, that model robot’s arm movements based on Newton’s laws.

1 Introduction

Both numeric simulation and constraint-based optimization are successfully ap-
plied in wide variety of domains. This paper is concerned with developing a
unified object-oriented (OO) language supporting both simulation modeling and
decision optimization.

The Problem: Simulation vs. Optimization Models

In decision optimization problems one often needs to model a real-world process,
such as a supply chain, an interaction of physical devices, a chemical process, or
activities of a robot. However, describing a process using traditional operations
research (OR) modeling, with decision variables, constraints, and objective func-
tions, is quite a challenging task for non-OR professionals, even for those with
general computer science and programming skills.

The reason for that challenge is that the elements of an OR model are abstract
constraints, which have only an indirect connection to elements of a real-world
process. For example, one equation may combine eclements from several real-
world devices. Also, the notions of order and timing of events are usually not
explicit in OR models, which puts additional burden on the modeler. Further-
more, the execution of the optimization is typically a black box for the modeler,
with no clear connection to the flow of the real world process. This makes de-
bugging of an optimization model a challenging task. If the optimization fails
there is no clear explanation for the failure. Finally, OR models typically lack
the modularity of modern object-oriented languages, so they tend to become
difficult to maintain over time (like “spaghetti code”).

By contrast, simulations are generally well understood by software develop-
crs. The clements of a simulation are state variables and state-transitions, which
have a clear one-to-one correspondence with elements of a real-world process.
Every quantity from the real-world process is represented by a single state vari-
able, so there is little room for confusion. Real-world time and sequence of events
correspond to time and sequence in the running simulation in an obvious way.
Also, the “cause and effect” progression of the simulation is easy to follow. If
the simulation fails, the exact time and place of the failure is reported. Finally,
simulation modelers can practice modern object-oriented software engineering.
Complex building blocks can be modeled using simpler building blocks, and
so on. In fact, modern OO languages have been derived from early simulation

While simulation offers numerous advantages in ecase of modeling and de-
bugging, OR modeling has one major advantage. If modeled correctly using a
manageable constraint domain such as LP or MILP, an optimization problem
can be solved efliciently using existing solvers with sophisticated optimization
algorithms. By contrast, no such solvers exist for simulation models. Typically,
simulations arc optimized by choosing paramecters manually. An optimization
layer can be added by running a simulation multiple times, with possible heuris-
tics. However, such a search cannot compete with performance of solvers on
manageable constraint domains.

Contributions

We have proposed and implemented the language CoJava, which offers both the
advantages of simulation-like process modeling in Java, and the capabilities of
true decision optimization.

By design, the syntax of CoJava is identical to the programming language
Java, extended with special constructs to (1) make a non-deterministic choice of
a numeric value, (2) assert a constraint, and (3) designate a program variable as
the objective to be optimized.

A CoJava program defines a set of nondeterministic execution paths, each
being a program run with specific selection of values in the choice statements.
The semantics of CoJava interprets a program as an optimal nondeterministic
exccution path, namely, a path that (1) satisfies the range conditions in the choice

statements, (2) satisfies the assert-constraint statements, and (3) produces the
optimal valuc in a designated program variable, among all exccution paths that
satisfy (1) and (2). To run a CoJava program amounts to first finding an optimal
execution path, and then procedurally executing it.

To optimize a process, each real-world device or facility is modeled, tested and
debugged in pure Java as a class of objects with private state and public methods
which change the state. A process is described as a method of a separate class,
which invokes methods of the model objects passing non-deterministic choices
for arguments, and which designates an optimization objective.

For model developers, it appears as if the program has simply followed a single
execution path which coincidentally produces the optimal objective value. Since
CoJava builds on software developers’ existing skills, the learning curve for them
is minimal. For OR professionals, CoJava enables development of decision models
in the most natural way, which preserves the one-to-one correspondence with the
components of a real-world process. Moreover, it provides OR modelers with the
powerful OO language features, and permits complex models to be organized
into self-contained business objects and processes, which reduces development
time and allows easy extensibility.

To be able to find an optimal execution path for a CoJava program, we
have developed a reduction to a standard constraint optimization formulation.
Constraint variables represent values on program variables that can be created
at any state of a non-deterministic execution. Constraints encode transitions,
triggered by CoJava statements, from one program state to the next, and also
;apture conditions in the assert statements.

The reduction and the implementation are made under three simple restric-
tions, explained in the paper. Namely, that (1) Boolean exit condition in loops
can not involve non-deterministic values, (2) recursive method calls cannot be
made from a non-deterministic conditional statement, and (3) an objective
parameter requested to be optimized cannot appear in a non-deterministic con-
ditional statement.

The restrictions insure that (1) the length of any execution trace, and thus
a number of values generated, are not dependant on non-deterministic choices,
and (2) any non-deterministic choice statements, and Boolean conditions on
non-deterministic values in assert statements have a unique corresponding
objective parameter, which needs to be optimized.

We have developed a CoJava constraint compiler, which is based on the
reduction of the optimization problem to a standard formulation. The compiler
operates by first translating the Java program into a very similar Java program in
which the primitive numeric operators and data types are replaced by symbolic
constraint operators and data types. This intermediate java program functions
as a constraint generator. This program is compiled and executed to produce
a symbolic decision problem. The decision problem is then submitted to an
external optimization solver.

To demonstrate the power of CoJava, a realistic problem in the area of robot
arm control has been implemented. The robot arm is constructed using self-

contained components implemented as CoJava classes, that model robot’s arm
movements based on Newton’s laws.

Related Work

CoJava addresses the goals of constraint modeling and object oriented simu-
lation. Object oriented simulation has traditionally been approached through
procedural object oriented languages, such as Smalltalk [?] and Java [?]. These
languages start with a syntax for variable assignment and add support for mod-
ular organization of procedures. There are many specialized object oriented sim-
ulation languages such as Simula [?] and ModSim [?], an there are simulation
environments layered on top of existing object oriented languages such as Silk [?]
and JWarp [?]. These languages allow complex models to be constructed and
maintained effectively, but lack support for systematic optimization.

Constraint modeling has traditionally been approached through specialized
constraint modeling languages, such as AMPL [?] and GAMS [?]. These lan-
guages start with a syntax for equations and layer additional support for or-
ganizing equations and other constraints. They enable systematic optimization,
but they require explicit definition and maintenance of equations and other con-
straints.

Constraint programming languages, such as OPL [?] and CLP [?], allow
developers to specify strategies for solving optimization problems. Certain con-
straint programming languages provide support for object oriented modeling as
well. However, the focus of constraint programming is on solving optimization
problems rather than modeling such problems.

In recent years, there has been considerable interest in languages that com-
bine constraints with object oriented programming. These languages are moti-
vated by the need for modular construction of optimizable models. Languages
such as Cob [?] and Siri [?] add object oriented modeling constructs, such as in-
heritance and encapsulation, to an equational syntax. These languages provide a
very clean representation for steady-state optimization problems, but they don’t
model state changes in the direct way that procedural languages do.

Other languages combine constraints with object oriented procedures in a
“hybrid” fashion, maintaining program states and constraints side by side. Some
languages, such as CCUBE [?] and Lyric [?] add explicit constraint objects to a
procedural language, allowing procedures for building and querying a database
of constraints. Other languages such as ThingLab [?] and Kaleidoscope [?] im-
pose both state changes and constraints on the same object attributes. These
languages provide separate procedure execution semantics and constraint solving
semantics which interact during program execution.

The languages most closely related to CoJava are those that translate proce-
dural algorithms into declarative constraints. These languages unify procedural
and constraint semantics, such that the same program statements determine
both interpretations. The language Modelica [?] supports unified models, which
can define both simulation and optimization problems. Modelica models are
translated into equations, which may in turn be solved by an optimizer or sorted

and compiled into an efficient sequential procedure. Within pure functions (func-
tions without side effects), Modelica can also translate procedural algorithms into
constraint equations. Within these functions, Modelica gains the advantage of
specifying constraints using familiar procedural operations and flow of control.
However, Modelica is fundamentally an equational language, and it supports
procedural algorithms only in this limited context.

By contrast, CoJava has a thoroughly procedural object oriented syntax and
semantics, (which is in fact identical to that of Java). CoJava presents the de-
veloper with no visible boundary between procedures and constraints. Familiar
procedural operations and flow of control can be used uniformly throughout an
entire model, or even throughout an entire software system. Our philosophy is
to minimize the learning curve for developers, and to minimize the ”impedance
mismatch” between procedures and constraints, by conforming to a single well
understood syntax and semantics. CoJava gives developers the flexibility to move
model components freely back and forth between procedural algorithms and
declarative optimization models. We believe this capability is unique to CoJava.

2 Syntax and Dual Semantics of CoJava

Syntax and Procedural Semantics

By design, the syntax of CoJava is identical to that of the Java programming

language, extended with one special library class, and a few restrictions on how

its methods can interact with the rest of the program. CoJava has two comple-

mentary semantics: the regular procedural semantics of Java, which can be used

for a simulation process, and an additional decision optimization semantics.
More specifically, CoJava adds the following special class to Java:

public class DecisionMaker {
public double choice(double min, double max) {...}
public double checkMinObjective(double objective) {...}
public double checkMaxObjective(double objective) {...}
}

CoJava’s procedural semantics is identical to the standard Java semantics, where
the semantics of the DecisionMaker class methods are as follows. The method
choice(min,max) returns a single specific value between min and max. Note
that the value for min may be negative infinity, and for max positive infinity.
This method may be implemented by the user, and an optional default imple-
mentation (e.g., random selection, using a particular distribution) is provided
by the system.

The methods checkMinObjective and checkMaxObjective, in the proce-
dural semantics, do nothing but output the value of the parameter objective.
Sometimes we’ll be using the name checkObjective to refer to either of the two
methods.

CoJava program can also use the Java command assert (booleanCondition)
with the standard procedural semantics, namely the program will report an error
if the booleanCondition is not satisfied.

We will explain the optimization semantics, and the limitation on how the
methods of DecisionMaker interact with the rest of the program in separate sub-
section. To first understand the concepts intuitively, we start with an example.

Example

As an illustration of the syntax and semantics of CoJava, consider the following
fragment of a CoJava program, which models the production of two products,
using one raw material drawn from a limited inventory.

double inventory = 50.0;

double gtyProductl = decisionMaker.choice(0.0, 20.0);

double gtyProduct2 = decisionMaker.choice(0.0, 20.0);

double materialUsed = 2.0 * qtyProductl + 1.0 * gtyProduct2;
double inventory = inventory - materialUsed;

assert inventory >= 0.0;

double profit = 5.0 * qtyProductl + 1.0 * qtyProduct?2;
decisionMaker.checkMaxObjective (profit);

Intital inventory of the raw material, which is consumed in production,
is 50.0. Then, using the method choice, the quantity to produce for product
1 and 2 is selected, ecach restricted to be between 0.0 and 20.0. The amounts
2.0 and 1.0 of the raw material are needed to produce 1 unit of product 1
and 2, respectively. Therefore, 2.0 * gqtyProductl + 1.0 * qtyProduct? is
the amount of raw material to be used. Then, inventory is updated to reflect the
materials consumed. The assert statement verifies that the inventory remains
non-negative, and halts the program otherwise. The profit per unit for products
1 and 2 are 5.0 and 1.0 respectively, and therefore, the total profit is 5.0
* qtyProductl + 1.0 * gtyProduct2. Finally, program outputs the profit
using the method checkMaxObjective.

If we were to compile and run the example procedure, particular quantities
would be chosen for cach product arbitrarily and a particular value would be
computed for profit. This profit would typically not be optimal.

In addition to the standard procedural semantics, we propose a decision op-
timization semantics. For the production example, the optimization semantics
will permit quantities of the products to be determined, which are optimal in
terms of profit. More specifically, in the optimization semantics, the method
choice is interpretted as a non-deterministic selection of a value from a range.
A series of specific selection from cach choice statment will define an execution
trace in a non-deterministic program. Thus, a program with choice statements
defines a set of possible execution traces, some of which may fail by not satisfy-
ing an assert statement. Some execution traces will reach the checkObjective
statement.

The decision optmization semantics of CoJava interprets each program as an
optimization problem: the search space is the set of all execution traces that reach
the checkMax0Objective statement; the objective function is the value passed to
the checkObjective method. In our example, a solution to the optimization
problem will give quantities of products that maximize the profit.

Unfortunately, even for the simple production example, there are infinitely
many execution traces, because values in non-deterministic choices range over a
continuous interval. Fortunately, it is possible to reduce the optimization prob-
lem over the set of all exccution traces to a standard constraint optimization
form in terms of constraint variables, constraints and the objective function.
Intuitively, this is done by encoding, with constraint variables, the states of pro-
gram execution, and by encoding with constraints valid transitions from one
program state to the next state in an execution trace. To illustrate, we show
constraint encoding for the production example.

Initial program state is encoded by the empty conjunction C'S of constraints,
i.e., TRUE. After the the first assignment, the new program state is represented
by a constraint variable inventory;, which represents a value in the program
variable inventory after the assignment is made. The constraint inventory; =
50.0 is added to the constraint store C'S.

Assignments with the choice method on the right hand side are encoded as
range constraints, within which a non-deterministic choice can be made. Thus,
after the two choice statements, the constraints

0.0 < qtyProductly < 20.0
0.0 < qtyProduct2; < 20.0

arce added to the constraint store C'S. Note that two additional constraint
variables have been created.

The forth and the fifth assignments introduce two additional equations to be
added to C'S

materialUsed; = 2.0 x gty Productl; + 1.0 % gty Product2,
inventorys = inventory; — matertalUsed

Notice the new constraint variable materialUsed;. Also, note that a new
constraint variable inventorys was created for the program variable inventory,
which is necessary to represent the value of inventory in the new program state.

As the assert statement is encoded, a single additional inequality inventorys >
0.0 is added to the constraint store.

Similarly, the next assignment is encoded by adding the equation

profit; = 5.0 x gty Productl; + 1.0 x gty Product2,

The constraint store C'S is now:

CS = inventory; = 50.0A

0.0 < gty Productly < 20.0A

0.0 < qtyProduct2, < 20.0A

materialUsed; = 2.0 x gty Productl; + 1.0 x gty Product2; A\
inventorys = inventory; — materiallU sedA

inventorys > 0.0A

profit; = 5.0 % gty Productl, + 1.0 % gty Product2,

Finally, the checkMaxObjective(profit) statement is encoded as the deci-
sion optimization problem:

maximizeprofit,s.t.C'S

In fact, if we ran this problem using an LP solver, we would get the answer
qtyProductl; = 20.0 and gty Product2; = 10.0.

estrictions on DecisionMaker ass Methods

Certain restrictions on how the methods choice(...), checkObjective, and
the command assert interact with the rest of CoJava program are imposed to
make the optimization semantics well-defined and computatable.

More specifically, the purpose of the restrictions is to control the size of the
set of values that are computed during any execution trace of the program. As
long as the program computes a predictable number of values, we can identifiy
a correspondence between values across all program traces.

To formulate the restrictions, we use the notion of non-deterministic values,
or ND-values for short, which we define recursively as follows.

— The output of a choice method is ND-value

— A variable is an ND-value, if it appears on the left-hand side of an assignment
with an ND-value on the right-hand side.

— A variable is an ND-value, if it appears on the left-hand side of an assigne-
ment that appears in the THEN or ELSE part of a conditional statement,
where the Boolean condition is an ND-value.

— The result of an arithmetic or Boolean operation on one or more ND-values
is an ND-value.

We also say that a conditional statement is ND, if its Boolean condition is
ND. A LOOP statement is ND, if its exit Boolean condition is ND. A method
call is ND, if it is done from within an ND conditional statement. We also say
that a variable, expression, conditional statement cte. are deterministic to mean
the negation of being non-deterministic.

The following simple restrictions are imposed in order to make the number of
values computed by the program independent of the non-determinstic choices,
and associate at most one checkObjective method call with each choice call
and assert statement.

— No ND loops
— No ND recursive method calls
— No ND calls for checkObjective.

The first restriction controls the number of iterations of each loop. As long
as the loops exit conditions are deterministic, the loop will continue for a deter-
minstic number of iterations. If a loop executed a non-determinstic number of
iterations, it would compute a non-determistic number of values.

The second restriction controls the depth of recursive calls. By prohibiting
recursive calls within non-determinstic conditionals, we prevent the depth of
recursion from depending on non-determinstic choices. We do allow arbitraty
non-recursive method calls, whether or not they are deterministic, and also re-
cursive method calls as long as they are deterministic.

The third restriction, namely that no checkObjective is called from a ND
conditional statement, makes sure that per given input to the program, (1)
all checkObjective method calls have a total ordering, which is determinis-
tic, and (2) that cvery execcution trace that goes through a specific choice
or assert statement will deterministically “continue” to a unique “nearist”
checkObjective call (if there is any). In this case, we say that such a choice
or assert statement is in the scope of that nearest checkObjective call.

For example,...

We are now ready to define optimization semantics in a general way.

Optimization Semantics

The decision optimization semantics interprets the method choice as a non-
deterministic selection of a value from a range. A series of specific selections from
each choice invocation will define an execution trace in a non-deterministic pro-
gram. Thus, a program with choice method invocations defines a set of possible
execution traces, some of which may fail by not satisfying the condition in an
assert statement. Some execution traces will reach a given checkMinObjective
or checkMax0Objective statement.

Case 1: Single checkObjective Call, as Last Program Statement We
assume here that all the restrictions outlined are satisfied. Given a CoJava pro-
gram P, input I, and the checkObjective (v) statement S as the last program
statement, we denote by ET the set of all execution traces e that reach S. For a
particular execution trace e € ET', we denote by v(e) the value of the program
varialbe v at the statement S.

The decision optimization semantics interprets the program as a decision
optimizatin problem OP:

Optimize v(e) s.t. e € ET

where Optimize stands for Minimize in the case of checkMinObjective and for
Mazimize in the case of checkMaxObjective.

10

Note that a solution to this problem may not be unique, as more than one
execution trace e € ET may have the minimal/maximal v(e). An optimal exe-
cution trace e defines the values for each execution of a choice method.

An execution of the program P according to optimization semantics is viewed
as a regular procedural execution where the values returned by each choice
statement are those corresponding to an optimal execution trace e.

Case 2: No checkObjective in the program In this casc, the decision
optimization semantics interprets the program as a satisfaction problem SP:
Find e € ET, where ET is the set of all execution traces that reach a special
NOOP method (which does nothing) at the end of the program. We call such
execution traces wvalid.

An execution of the program P according to optimization semantics is viewed
as a regular procedural execution where the values returned by each choice
statement are those corresponding to a valid execution trace e.

Case 3: One or More checkObjective Calls According to Restrictions
We do not discuss this general case in detail in this paper, nor was it imple-
mented. Here we only provide a general idea. Because of the restrictions, (1)
all checkObjective method calls have a total ordering, which is determinis-
tic, and (2) that every execution trace that goes through a specific choice
or assert statement will deterministically “continue” to a unique “nearest”
checkObjective call (if there is any). In this case, we say that such a choice
or assert statement is in the scope of that nearest checkObjective call.

The idea here, is to consider an execution as split into sections, in the order
of checkObjective calls, each with the choice and assert statements in its
scope, and apply Case 1 on all but the last section, and Case 2 on the last.

2.1 Generation of Standard Constraint Optimization Formulation

In this subsection we briefly describe how a decision optimization problem in
terms of constraint variables, constraints and an objective function is formu-
lated, so that it would be equivalent to the optimization problem in the opti-
mization semantics of CoJava. To do that, we conceptually describe a modified
Java program that generates symbolic constraints, to be used in the optimization
problem.

First, we introduce symbolic expessions types, for arithmetic numeric and
Boolean types. This is done by implementing symbExpression class. This class
has methods which are their arithmetic counterparts: add, subtract, multiply
ete., that construct more complex arithmetic symbolic expressions from simpler
ones.

Similarly, symbolic atomic constraints correspond to inequalities or equations
between two symbolic arithmetic expressions. Symbolic constraints are either
atomic, or constructed using Boolean operators of simpler symbolic constraints
in the standard fashion.

11

The Java code of the CoJava program is modified as follows. All numeric
and Boolean types are replaced with their symbolic counterparts, and so are the
operators. Some program statements extend CS (i.c., conjuncts it with additional
constraints). Initially, constraint store CS is empty. Then:

— For assignement statement of the form v = AE, where AE is an arithmetic
expression, a new constraint variable v,,q,, is generated for the program vari-
able v, a symbolic arithmetic expression Symb(AE) is created for the RHS
AE, and the constraint vy,e,, = Symb(AFE) is added to the constraint store CS.
Also, a program variable v is converted to the type symbolic expression
in the modified program.

— A conditional statement of the form

if C { S1 } else { 52 }

where C is a non-deterministic (ND) Boolean condition, and S1 and $2 are
statements, is first replaced with two conditional statements

if ¢ { 81 }; if not C { S2 }

— For a conditional statement of the form if C { § } ,including those gener-
ated from if ... else ... statement, the following constraints are added
to CS:

symb(C) — Constraints(S)
—symb(C) — Equalities

where Constraints(S) stand for the constraints that would be generated for
the statement S if it was executed unconditionally, and Fqualities is the set
of equality constraints of the form v,e, = V14, Where vye,, is the newest con-
straint variable vy, generated for a program variable v in Constraints(S),
and v,;4 18 the last constraint variable for v before the conditional statement.

— For an assignment v = choice(min,max), a constraint min < vpen < maz
is generated and added to CS

— For an assert(C) statement a constraint symb(C) is generated and added
to CS

For Casc 1 of optimization semantics, where checkObjective (objective) call

is the last statement of the program, the optimization problem constructed is:
Optimize objective .,ppons S-1.C'S

where Optimize stand for Minimize in the case of checkMinObjective and Maz-

imize in the case of checkMaxObjective, and objective ., opn; 1S the most recent

constraint variable for the program variable objective.

12
3 Overview of Implementation

We have developed a constraint compiler for the the CoJava language. The
constraint compiler translates a nondeterminstic simulation procedure into an
equivalent decision problem. The input is a program in the CoJava (our restricted
version of Java). The resulting decision problem consists of a sct of equations
and incqualitics in the mathematical modeling language AMPL.

The overall flow of the costraint compiler is as follows: First, a simulation
procedure is made nondeterminstic by initializing it with values from the nonde-
terminstic choice library, and designating its output as an objective value. This
requires no change to the procedure itself, only to its paramecters and return
value. Next, the procedure is transformed to create a constraint generator proce-
dure. This involves uniformly converting all of its numeric data types to symbolic
expression data types. Next, the constraint generator is compiled and executed
(using a standard java compiler). The result generated by this procedure is a set
of symbolic expression data structures, represent the nondeterministic output of
the simulation procedure. Finally, these symbolic expressions are translated into
a standard constraint proramming language such as AMPL.

| Simulation procedure in Java U Constraint generator procedure U
C Send nondeterministic choices for parameters) (Execute the transformed procedure)

4 Y /
Nondeterministic simulation procedure | Symbolic expression structure
(Substitute symbolic types for numeric types Translate expression structure to AMPL)
Z Y
| Optimization problem in AMPL

Fig. 1. Diagram of the Constraint Compiler

4 Realistic Decision Problem

In this section, we present a realistic problem to demonstrate the capabilities of
the unified language. We show how the unified langauge can be used to model
a complete decision problem, and how the decision problem can be solved using
an existing solver.

We have selected a problem in the area of robot arm control. Basically, we
simulate the acceleration of a robot arm under the forces of gravity and several

13

motors. This problem includes an element of time, so it illustrates the relation-
ship between a sequential process and the immutable constraints that describe
it. The objective for this decision problem is to drive the robot arm as close as
possible to a certain final position and velocity.

We have modeled this optimization problem with a non-linear optimizer in
mind. We have avoided the use of conditional statements so as not to create
a highly combinatorial problem for the optimizer. We were able to restrict the
numeric formulas to second degree polynomials throughout the simulation. The
simulation procedure integrates Newton’s equations of motion by iteratively up-
dating velocitics based on current positions, and updating positions based on
current velocities. After every few timesteps, new forces are chosen for the mo-
tors driving the robot arm.

7
ArmModel Device Mass Vector

Structure

"
Maneuver Maneuver.Signal Motor Bar

Fig. 2. Class Diagram of the Simulator

The simulation procedure is implemented as a small hierarchy of object
classes, depicted in Figure 2. You can see that we have built a very small linear
algebra library, a small mechanical physics library, and a simple discrete time
simulation library. These software components arc assembled together to pro-
duce a complete simulation procedure, and then to define a complete decision
problem. Most of the advantages of object oriented design are available within
the unified language, including encapsulation, visibility control, inheretence, and
limited polymorphism.

For our decision problem, we have assembled a very simple robot arm, al-
though more elaborate arms can be assembled easily. We have limited the robot
arm to three point masses, three clastic bars, and two lincar motors. Also, we
have limited its motion to two dimensions. This is accomplished simply by posi-
tioning all of the masses in a single plane. Our symbolic expression library is able
to detect that all z-axis coordinates evaluate to the constant zero, and to omit
them completely from the optimization problem. In order to limit the decision
problem to a manageable number of constraints, we limit the simulation to a
four of timesteps. Figure 3 in Appendix depicts the simple robot arm.

Figure 4 is an excerpt of the simulation procedure in CoJava. This procedure
is standard Java source code, and can be compiled an run using any Java com-

14

piler. As a simulation procedure, the program can be run with arbitrary choices
(which may be made by hand) for the motor forces. The result is a single sim-
ulation history and a single objective value for cach choice made. The objective
is to minimize the sum of square error in final position and velocity.

For our simulation procedure, the constraint compiler produces 229 con-
straints and 226 contraint variables. We did not include an excerpt from the
constraints in AMPL format due to space limitation. There, the constraint vari-
ables distance2_17 and speed2_1 represents the objective function, and the
constraint variables range_1, range_2, range_3, range 4 represent the decision
variables. Both MINOS and SNOPT did successfully solve this optimization
problem.

5 Conclusions and Future Work

We presented a unified language with complementing procedural and optimiza-
tion semantics. Some questions, such as how to generalize CoJava to serve as
a general computational paradigm, how to extend it with intelligent debugging
capability, how to add CP facilitics, and how to extend underlying constraint
solvers remain for future research.

Anchor Point Mass Point

EEEEEEEEEEEER Elastic Bar
Linear Motor

Fig. 3. Diagram of the Modeled Robot Arm

JH*
* Advance the physical simulation by one timestep.
*/

public void advance(double dt)

{

for (int i = 0; i < structures.size(); i =1 + 1) {
Structure structure = (Structure) structures.get(i);
structure.push(dt) ;

}

for (int 1 = 0; i < masses.size(); 1 =1 + 1) {
Mass mass = (Mass) masses.get(i);
mass.move (dt) ;

}

VET

* Return the square error in final speed and position.
*/
public double getSuccess()

{
Vector target = new Vector(0.25, 8.0, 0);
Vector zero = new Vector(0, 0, 0);
double distance2 = hand.position.length2(target);
double speed2 = hand.velocity.length2(zero);
return distance2 + speed2;

}

Fig. 4. Excerpt of the Arm Simulation

